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Abstract

A numerical algorithm for solving mantle convection problems with strongly variable viscosity is presented. Equa-

tions for conservation of mass and momentum for highly viscous and incompressible fluids are solved iteratively by a

multigrid method in combination with pseudo-compressibility and local time stepping techniques. This algorithm is

suitable for large-scale three-dimensional numerical simulations, because (i) memory storage for any additional matrix

is not required and (ii) vectorization and parallelization are straightforward. The present algorithm has been incorpo-

rated into a mantle convection simulation program based on the finite-volume discretization in a three-dimensional

rectangular domain. Benchmark comparisons with previous two- and three-dimensional calculations including the tem-

perature- and/or depth-dependent viscosity revealed that accurate results are successfully reproduced even for the cases

with viscosity variations of several orders of magnitude. The robustness of the numerical method against viscosity

variation can be significantly improved by increasing the pre- and post-smoothing calculations during the multigrid

operations, and the convergence can be achieved for the global viscosity variations up to 1010.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The Earth�s mantle is the spherical shell composed of silicate rocks and it ranges from approximately

5–50 to 2900 km depth. Although the mantle behaves like an elastic solid on short time scales, it acts
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like a highly viscous fluid on long time scales. The mantle also acts as a heat engine and it is in a con-

vective motion in order to transport the heat from the hot interior to the cool surface [1,2]. The mantle

convection is observed as the motion of tectonic plates at the Earth�s surface. The motion of surface

plates, in turn, drives seismicity, volcanism and mountain building at the plate margins. Thus, the man-

tle convection is the origin of the geological and geophysical phenomena observed at the Earth�s sur-
face. A major tool for understanding the mantle convection is numerical analysis. It has been playing

an important role in the study of mantle convection, since a numerical simulation of mantle convection

first arose [3,4].

Mantle convection requires different numerical techniques from those for ordinary fluids such as water

because of its rheological properties. The viscosity of mantle materials is estimated as high as 1022 Pa s [1,5].

Since the mantle materials is highly viscous, both the nonlinear and time-derivative terms of velocity can be

ignored in the equation of motion. This implies that the flow in the mantle is described by a steady-state

Stokes flow balancing among the buoyancy force, pressure gradient and viscous resistance. Taken together
with the assumption of incompressibility, one needs to solve elliptic differential equations for velocity and

pressure at every timestep. In addition, the viscosity of mantle material varies by several orders of magni-

tude depending on temperature, pressure, and stress [6,7]. The strong variation in viscosity makes numerical

techniques for ordinary isoviscous fluids, such as the spectral method [8,9], unfit for the numerical modeling

of mantle convection. In order to get deep insights into the mantle convection, it is very important to

develop efficient numerical techniques that can deal with the steady-state flow of highly viscous and incom-

pressible fluids with a strongly variable viscosity.

The efficiency of numerical simulations of mantle convection strongly relies on numerical methods
used for solving elliptic differential equations. One of the most efficient methods is the multigrid iteration

[10]. The multigrid concept has been successfully applied to a wide range of problems, including calcu-

lations of incompressible fluid flow [11–13]. During the last two decades, various numerical models of

mantle convection have been developed where the multigrid method is utilized. There are two strategies

to apply the multigrid method to this problem, depending on how the steady-state Stokes equations are

solved.

The first strategy solves the Stokes equations by splitting into the separate equations for velocities and

pressure. The discretized equations for velocity components (or their proxy) are solved by the multigrid
method, while the pressure is eliminated or solved separately. Parmentier et al. [14] developed convection

models of isoviscous fluid in three-dimensional Cartesian geometry. By using a streamfunction formula-

tion, the Stokes equations are reduced to a pair of Poisson equations which are solved by multigrid iter-

ations. Baumgardner [15] developed a convection model of isoviscous fluid in a three-dimensional

spherical geometry. He solved the elliptic equations for velocity components using a multigrid method,

while the pressure fields are prescribed by the equation of state. Baumgardner and his colleagues [16–

18] further developed convection models for fluids with variable viscosity in a three-dimensional spherical

geometry. The Stokes equations are solved separately for velocity and pressure by so-called Uzawa iter-
ative scheme [19]. The iteration for velocity is carried out by a multigrid method, while a conjugate gra-

dient scheme is used for pressure iteration. This approach was also employed by Moresi and his

colleagues [20,21] for convection problems with strongly variable viscosity in two- and three-dimensional

Cartesian geometry.

The second strategy, on the other hand, solves the Stokes equations for velocity and pressure as a

whole by the multigrid technique. The key issue of this strategy is a choice of the smoothing algorithm

which reduces the errors of solution on a particular grid. Several methods for solving incompressible fluid

flows have been utilized as a smoothing algorithm. Trompert and Hansen [22,23] and Albers [24] devel-
oped numerical methods for convection problems with variable viscosity in three-dimensional Cartesian

geometry. The Stokes equations are solved by a multigrid method where the SIMPLER algorithm [25] is

employed as a smoothing operation. Auth and Harder [26] used the symmetric coupled Gauss–Seidel
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(SCGS) method [27] as a smoothing operation in the multigrid method for solving the Stokes equation.

Tackley [28,29] employed a similar smoothing method where the velocity and pressure fields are updated

in a somewhat coupled manner, and his method has been successfully applied to a variety of convection

problems [29,30], including calculations with extremely variable viscosity [31–33].

In this paper, we present a solution algorithm for the three-dimensional mantle convection, following
the second strategy where the Stokes equations are solved as a whole by the multigrid method. In Section

2 we introduce our solution algorithm based on the pseudo-compressibility method [34]. A notable fea-

ture of our algorithm is its simplicity and intuitiveness. This feature makes the algorithm easily fit to a

smoothing operation of the multigrid iterations. In addition, taken together with the local time-stepping

method, a strong variation in viscosity can be handled without a severe increase in computational costs.

In Section 3, we develop a numerical model of mantle convection that can deal with a strongly variable

viscosity based on the algorithm presented in Section 2 together with the multigrid technique. In order to

demonstrate the validity and efficiency of our algorithm, we carry out several calculations for the mantle
convection with a strongly variable viscosity. In this paper, an application of our algorithm is the thermal

convection in a three-dimensional rectangular domain. It can be easily applied to the numerical models

for more realistic problems of mantle convection, such as spherical shell geometry and thermo-chemical

convection and so on.
2. Iterative algorithm for mantle convection

We consider thermal convection of a highly viscous and incompressible fluid with a strongly variable

Newtonian viscosity in a three-dimensional Cartesian geometry (x1 = x, x2 = y, x3 = z).

The nondimensional forms of the fundamental equations are (for example [35,36])
� o

oxj
g

ovj
oxi

þ ovi
oxj

� �� �
þ op
oxi

¼ RaTdi3 ði; j ¼ 1; 2; 3Þ; ð1Þ

ovk
oxk

¼ 0 ðk ¼ 1; 2; 3Þ; ð2Þ

oT
ot

þ vi
oT
oxi

¼ o2T
ox2j

þ q; ð3Þ
where vi (i = 1,2,3) are fluid velocities in ith direction, p pressure, g viscosity, T temperature, Ra the Ray-

leigh number, and q is the internal heating rate. We assumed that x3-axis is the vertical axis pointing up-

ward. Boussinesq approximation is employed in the energy equation (3) and, hence, the effects of adiabatic

and viscous heating are ignored.

2.1. Overview of the iterative algorithm

In the following, we consider the solution algorithm for the conservation equations of momentum (1)

and mass (2). In order to simplify the solution algorithm, the energy equation (3) is solved separately from

Eqs. (1) and (2): the temperature T at new time is calculated using the velocity at old time in the advection

term. This algorithm solves Eqs. (1) and (2) for the velocity and pressure at new time using the new tem-

perature. In addition, the viscosity g at new time is already known by some means and kept unchanged

while the velocity and pressure are computed. Because of these assumptions, Eqs. (1) and (2) are taken

to be linear with respect to velocity and pressure.
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The discretized equations of (1) and (2) can be written in a matrix form of
Ax ¼ b; ð4Þ

where
A �

C11 C12 C13 G1

C21 C22 C23 G2

C31 C32 C33 G3

D1 D2 D3 0

2
6664

3
7775; x �

v1

v2

v3

p

2
6664

3
7775; b �

0

0

Rah

0

2
6664

3
7775: ð5Þ
In (5), vi (i = 1,2,3) are the vectors of unknown fluid velocities in i-direction, p the vector of unknown pres-

sures, h the vector of known temperatures, Cij (i, j = 1,2,3) the matrices representing the spatial discretiza-

tion of velocities for calculating viscous stress, Gi (i = 1,2,3) the matrices representing the discretization of
the pressure gradient, Di (i = 1,2,3) the matrices representing the discretization of the divergence of veloc-

ity, and 0 is the zero matrix or zero vector. One of the major difficulties in solving (4) is that a zero block

appears in the main diagonal in A. This implies that basic iterative methods for solving linear simultaneous

equations (such as Jacobi and Gauss–Seidel methods) which make use of the inverse of the main diagonal

fail to solve (4).

The algorithm for solving (4) that we propose in this paper is another kind of iterative method: let xn be
an approximate at nth iteration (n = 0,1,2, . . .). We then calculate the approximate at the iteration (n + 1)

by
xnþ1 ¼ xn þ Tðb� AxnÞ: ð6Þ

Here, a regular matrix T is introduced so as to control the convergence rate of (6), and is chosen to be a
diagonal matrix whose nonzero elements are positive. This iterative procedure is used together with the

multigrid method, and is repeated until xn converges to a steady solution. It is obvious that the steady solu-

tion of (6) satisfies (4), and that it does not depend on T. In addition, the presence of zero block in the main

diagonal of A does not spoil the convergence of this iterative procedure.

This iterative algorithm is suitable for large-scale numerical simulations on massively parallel com-

puters and, in particular, massively vector-parallel supercomputers because (i) the procedure (6) consists

of multiplication of matrices and vectors and summation of vectors and, hence, can be easily vectorized

and parallelized, and (ii) large memory storage for the matrix T is not required, since T is a diagonal
matrix.

Another benefit of the iterative procedure (6) is that it is easily implemented into the multigrid method.

This is because the procedure (6) is quite similar to that representing the basic iterative methods which are

commonly used as a smoothing operator of the multigrid method. Suppose an iterative procedure for (4) by

Jacobi method
xnþ1 ¼ xn þD�1ðb� AxnÞ ðn ¼ 0; 1; 2; . . .Þ; ð7Þ

where a matrix D is the main diagonal of A. The two procedures (6) and (7) are the same except that the

diagonal matrix T is used in (6) in place of D�1 in (7). Therefore, the iterative procedure (6) can be used as a

smoothing operator of the multigrid method in a similar manner to Jacobi method.

In the following subsections, we will introduce the ideas which led us to the iterative procedure (6). We

will also discuss an appropriate choice of the matrix T, which is a key parameter in this procedure.
2.2. Ingredient 1: pseudo-compressibility method for highly viscous, incompressible fluids

When the matrix T is diagonal, Eq. (6) can be explicitly written as (i, j,k = 1,2,3)
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vnþ1
i ¼ vni þ svi � opn

oxi
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oxj
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ovnj
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oxj
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� �
; ð8Þ

pnþ1 ¼ pn � sp
ovnk
oxk

; ð9Þ
where svi ði ¼ 1; 2; 3Þ and sp are the diagonal elements appearing in T.
In order to discuss the physical meaning of these equations more clearly, we introduce the following

‘‘auxiliary’’ set of equations:
Mvi

ovi
o~t

¼ � op
oxi

þ o

oxj
g

ovj
oxi

þ ovi
oxj

� �� �
þ RaT di3; ð10Þ

K
op
o~t

¼ � ovk
oxk

: ð11Þ
Here ~t is analogous to time, Mvi ði ¼ 1; 2; 3Þ and K are positive constants analogous to density and com-
pressibility, respectively. These equations come from the modification of the ‘‘auxiliary’’ set of equations

used in the pseudo-compressibility method [34], which is used to solve steady-state flow of incompressible

fluid with high Reynolds number. The difference between Eqs. (10) and (11) and those employed for high

Reynolds-number flow is that the nonlinear term of velocity has been eliminated in (10), because the vis-

cosity of mantle materials is significantly high and, in other words, the Reynolds number is significantly

small.

By discretizing (10) and (11) in the direction of ~t by a first-order explicit scheme, we get
Mvi

vnþ1
i � vni
D~t

¼ � opn

oxi
þ o

oxj
g

ovnj
oxi

þ ovni
oxj

� �� �
þ RaTdi3; ð12Þ

K
pnþ1 � pn

D~t
¼ � ovnk

oxk
: ð13Þ
We notice that Eqs. (12) and (13) and Eqs. (8) and (9) are identical if we choose svi and sp as
svi ¼ D~t=Mvi ; sp ¼ D~t=K: ð14Þ

In other words, svi and sp are ‘‘effective’’ timesteps for the evolution of vi and p, respectively.

The iterative procedure given by (12) and (13) converges to an incompressible flow field regardless of the

choice of Mvi and K. To show this more clearly, we here assume that Mvi ; K and g are constants. From
Eqs. (10) and (11) we obtain the pseudo-temporal evolution of $ Æ v as
o
2

o~t2
ðr � mÞ ¼ 1

KM
r2ðr � mÞ þ 2g

M
o

o~t
r2 r � mð Þ
� �

: ð15Þ
(Here we denote Mvi � M .) The first term of the right-hand side represents the effect of propagation of

‘‘pseudo-sound wave’’ whose velocity is 1=
ffiffiffiffiffiffiffiffi
KM

p
, and the second term represents the effect of diffusion

due to viscosity. This equation indicates that the pseudo-temporal evolution of $ Æ v is characterized by

a decaying oscillation. Therefore, $ Æ v approaches to an asymptotic value (=0) as ~t increases to infinity.

Consequently, the procedure of (12) and (13) leads the steady velocity field with $ Æ v = 0, as long as the
numerical integration scheme is stable.

We also note that the iterative procedure (8) and (9) should be used in combination with multigrid

method [10]. Recall that we are trying to find a steady-state solution of evolution equations (10) and

(11) through a repetition of temporal integration, which inevitably requires a large number of iterations.
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Moreover, the elliptic nature of (10) for velocities vi results in a slow reduction in their errors, particularly in

their smooth components with large spatial wavelengths. By incorporating into the multigrid procedure, we

are able to obtain a sufficiently fast convergence. In fact, the multigrid technique is adopted in most of

recent numerical analysis using pseudo-compressibility method (for example [37,38]).

2.3. Ingredient 2: local time stepping method for strongly variable viscosity

In most of previous numerical analysis using pseudo-compressibility method (for example [37–40]), the

viscosity of fluids has been assumed to be constant. In this subsection, we apply this method for the cases

with a strong variation in viscosity.

The convergence rate of the original pseudo-compressibility method deteriorates in proportion to the

viscosity variation in the entire domain, when the spatial variation in viscosity is introduced. This is because

the viscosity g is a diffusion coefficient for vi in Eq. (10). The spatial variation in g results in the spatial
variation in the local convergence rate of vi. The values of vi in the region with smaller g reach to an appro-

priate solution only very slowly, whereas the values in the region with larger g converge quickly. This sug-

gests that the convergence should be accelerated particularly in the region with small g.
Here we try to accelerate the convergence for the case with a spatial variation in g by controlling the

stepping of the pseudo-time ~t in accordance with g. This idea is known as the local time stepping method,

which is used to obtain steady-state solution of evolutionary equations. This method allows updating each

variable using a timestep which is based on the local numerical stability criterion. We thus spatially vary the

effective timesteps svi and sp in (8) and (9) in accordance with g.
The spatial variation of svi and sp can be estimated from the local numerical stability criterion of (15). In

the following derivation, we assume for simplicity that Eq. (15) holds even in the case of variable viscosity.

From the criterion of the diffusion of $ Æ v (the second term in the right-hand side of (15)) we require that

the nondimensional parameter a defined by
a � 2g=M

D2=D~t
ð16Þ
is sufficiently small. Here D is the mesh size. Similarly, from the criterion of the pseudo-sound propagation

we require that the nondimensional parameter b defined by
b � 1=
ffiffiffiffiffiffiffiffi
KM

p

D=D~t
ð17Þ
is sufficiently small. By substituting (16) and (17) into (14) we get
svi ¼
D~t
M

¼ a
2

D2

g
; sp ¼

D~t
K

¼ 2b2

a
g: ð18Þ
Here we assumed Mvi ¼ M .

When svi and sp are defined by (18), the spatial variations of the diffusion of velocity components and

the pseudo-sound propagation become more modest than that of viscosity. Eq. (18) implies that M

(� Mvi in (10)) and K are taken to be proportional to g and g�1, respectively. By assuming that g/M and
Kg are constant in (10) and (11), we obtain the pseudo-temporal evolution of $ Æ v in the presence of spatial

variation in g as
o
2

o~t2
ðr � mÞ ¼ 1

KM
r2ðr � mÞþ 2g

M
o

o~t
½r2ðr � mÞ�þ 1

KM
o

oxi

oðlngÞ
oxi

ðr � mÞ
� �

þ g
M

o

oxi

oðlngÞ
oxj

o

o~t
ovj
oxi

þ ovi
oxj

� �� �
:

ð19Þ
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The first and second terms in the right-hand side of (19) are equivalent with those in the right-hand side of

(15). Note that the effects of spatial variation in g appear in the third and fourth terms in the form of lng.
Thus we expect that $ Æ v reduces to zero in the entire computational domain at a rate comparable to that

for the case with constant g.
Another constraint for svi and sp can be obtained directly from (6). Let en ” xn � A�1b and rn ” b � Axn

to be the error and the residual at nth iteration, respectively. From (6), we get the evolution equations for en

and rn as
enþ1 ¼ ðI � TAÞen; rnþ1 ¼ ðI � ATÞrn; ð20Þ

where I is the identity matrix. These equations indicate that the convergence rate of (6) becomes optimal

when T = Topt ” A�1. (In this sense, the matrix T can be regarded as a ‘‘preconditioner’’ for Eq. (4).) In

the present algorithm using local time stepping, we approximate T . Topt by a diagonal matrix. In addi-

tion, Eq. (20) implies that the necessary condition for the convergence is that the spectral radius of the

matrix I � TA (or, identically, I � AT) is smaller than one. Indeed, this condition is identical to the

Courant–Friedrichs–Lewy (CFL) condition of Eqs. (12) and (13), i.e., a < ac and b < bc where ac and bc
are threshold values.
3. Results

The algorithm described in the previous section has been incorporated into a mantle convection simu-

lation program in a three-dimensional rectangular domain. We carried out several calculations for thermal

convection with strongly variable viscosity, in order to demonstrate the validity and efficiency of the iter-

ative algorithm.

3.1. Details of numerical method

The basic equations are discretized by the finite volume method. A staggered grid is used; temperature

and pressure are located at the center of the grid cells, while the velocity components are at the center of the

cell faces normal to the direction of the velocity components. A uniform mesh is employed. The basic equa-

tions are nondimensionalized with a length scale of h (height of the box), time scale of h2/j (where j is ther-

mal diffusivity), temperature scale of DT (temperature drop across the box), and pressure scale of g0j/h
2

(where g0 is reference viscosity). In the following subsections, we present two kinds of calculations. First

is to obtain the instantaneous flow fields for prescribed distributions of buoyancy and viscosity, and second

is to obtain the temporal developments of thermal convection.

When the purpose is to obtain the flow fields, we only solve the conservation equations for momentum

(1) and mass (2). These equations are solved by the multigrid method based on correction-storage algo-

rithm, because of the linear nature of (4). The smoothing operation at each grid level is carried out by

(6). The diagonal elements of T for unknown velocities ðsviÞ were chosen to be 0.5 times the inverse of

the corresponding diagonal elements of A, while those for unknown pressures (sp) are to be 0.25 times
the viscosity at the corresponding cell centers. The values of svi and sp defined thus are approximately equal

to those with a ¼ b ¼ 1=8 in (18). (We observed that the iteration by (6) diverged when svi or sp is larger

than the above values.) A linear interpolation is used in both fine-to-coarse (restriction) and coarse-to-fine

(prolongation) operations. The values of viscosity at cell centers on coarser grids is calculated by a linear

interpolation from those on the finer grids by one grid level. On the other hand, the values of viscosity at the

midpoints of cell edges on each grid level, which are necessary to calculate viscous shear stress, are calcu-

lated by an interpolation proposed by Ogawa et al. [36] from the values at cell centers on the same grid

level. Since the aim of this paper is to demonstrate the efficiency and robustness of the smoothing algorithm
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(6), only the V-cycle is used in the present calculations, although more complicated multigrid iteration cy-

cles (such as W-, F-cycles) are expected to be more robust (for example [26,24]).

When the purpose is to obtain a time-dependent or steady-state convection, we solve the energy equation

(3) in addition to Eqs. (1) and (2). In the calculations presented in this paper, the internal heating rate q is

taken to be zero. The energy equation is discretized by a first-order Euler method in time. An upwind
scheme, called power-law scheme [25], is used to evaluate the contributions of heat transport by advection

and conduction. The discretized equation for T is solved by a fully implicit scheme when we seek for a stea-

dy-state convection, or by a fully explicit scheme when we seek for a time-dependent convection.

3.2. Benchmark comparison

In order to test the validity of our numerical code, we compare our results with those of earlier studies

[41,42,36]. The temperature T is fixed at 0 and 1 at the top (z = 1) and bottom (z = 0) boundaries, respec-
tively, while the vertical side walls are adiabatic. In most cases, the viscosity g is assumed to be dependent

on temperature T and depth (1 � z) as
g ¼ gt exp½�ETT þ Epð1� zÞ�; ð21Þ

where gt is the viscosity at the top surface (z = 1, T = 0), and ET and Ep are constants describing the tem-

perature- and depth-dependence of viscosity, respectively.

3.2.1. Benchmark for two-dimensional convection

First we present the benchmark comparison with Blankenbach et al. [41] for the cases of steady-state
convection in two-dimensional rectangular domains of aspect ratio (width/depth) k. We carried out calcu-

lations of five cases listed in Table 1. Cases 1a–1c are the convection of isoviscous fluid in a square box

(k = 1), Case 2a is the convection of fluids with temperature-dependent viscosity in a square box, and Case

2b is the convection with temperature- and depth-dependent viscosity in a box of k = 2.5. The impermeable

and shear-stress-free conditions are adopted along the all boundaries. The initial conditions are chosen to

make single convective cell with an ascending flow along the left-side wall (x = 0). We carried out these cal-

culations by varying the number of mesh divisions in x- and z-directions, while the mesh division in y-direc-

tion was kept to 1, in order to obtain two-dimensional flow patterns in the x–z plane.
We summarized in Table 1 the parameter values and mesh divisions employed in the present calcula-

tions, and the obtained values of (i) Nusselt number Nu, (ii) root-mean-square velocity Vrms, and (iii) ver-

tical temperature gradient q1–q4 at (x,z) = (0,1), (k, 1), (k, 0), and (0,0), respectively. We also show in Table

1 the results from the benchmark standard [41]. Table 1 shows that the agreement between the results of our

calculations and benchmark standards is satisfactory for all the values. We conclude that the present

numerical code accurately handles two-dimensional convection of fluids with both constant and variable

viscosity.

3.2.2. Benchmark for three-dimensional convection with modest viscosity variation

Second, we compare our results with those of Busse et al. [42] for the cases of steady-state convection

with both constant (Case 1a) and modestly temperature-dependent viscosity (Case 2) in a three-dimensional

rectangular box of a · b · 1. Fig. 1 shows the convective flow patterns for both cases. Case 1a is a bimodal

convection of isoviscous fluid with Ra = 3 · 104 in a box of a = 1.0079 and b = 0.6283, while Case 2 is a

square-cell convection in a cube (a = b = 1) with modestly temperature-dependent viscosity. In Case 2,

the viscosity g depends on temperature T as
gðT Þ ¼ exp
Q

T þ G
� Q
0:5þ G

� �
; Q ¼ 225

lnðrgÞ
� 0:25 lnðrgÞ; G ¼ 15

lnðrgÞ
� 0:5: ð22Þ



Table 1

Benchmark comparison with Blankenbach et al. [41]

Mesh 16 · 16 32 · 32 64 · 64 128 · 128 Benchmark standard

(a) Case 1a (constant viscosity, Ra = 104, k = 1)

Nu 4.726885 4.840006 4.872745 4.881429 4.884409 ± 0.000010

Vrms 41.755217 42.560118 42.785441 42.844667 42.864947 ± 0.000020

q1 (=q3) 7.695426 7.966605 8.036044 8.053536 8.059384 ± 0.000003

q2 (=q4) 0.887088 0.664927 0.608154 0.593695 0.588810 ± 0.000003

(b) Case 1b (constant viscosity, Ra = 105, k = 1)

Nu 9.235550 10.082608 10.394786 10.495490 10.534095 ± 0.000010

Vrms 181.18346 189.19219 191.98526 192.87381 193.21454 ± 0.00010

q1 (=q3) 14.424512 17.764322 18.731196 18.990358 19.079440 ± 0.000040

q2 (=q4) 3.441283 1.425553 0.898253 0.767465 0.722751 ± 0.000020

(c) Case 1c (constant viscosity, Ra = 106, k = 1)

Nu 13.505592 18.963003 20.884342 21.604074 21.972465 ± 0.000020

Vrms 675.69469 780.80943 814.68028 827.43096 833.98977 ± 0.00020

q1 (=q3) 16.63581 31.21463 41.44228 44.72368 45.96425 ± 0.00030

q2 (=q4) 9.836338 6.941879 2.477731 1.255997 0.877170 ± 0.000010

(d) Case 2a (Rat = 104, ET = ln(103), Ep = 0, k = 1)

Nu 10.3634 10.4780 10.1666 10.0862 10.0660 ± 0.00020

Vrms 372.2759 457.4738 475.5292 478.9647 480.4334 ± 0.1000

q1 17.42173 20.41169 18.33101 17.72910 17.53136 ± 0.00400

q2 2.25932 1.16135 1.03954 1.01498 1.00851 ± 0.00020

q3 14.1505 20.2221 25.3614 26.6611 26.8085 ± 0.0100

q4 7.036967 4.248769 1.557456 0.743177 0.497380 ± 0.000100

Mesh 40 · 16 80 · 32 160 · 64 320 · 128 Benchmark standard

(e) Case 2b (Rat = 104, ET = ln(16384), Ep = ln(64), k = 2.5)

Nu 7.4020 7.2761 7.0450 6.9605 6.9299 ± 0.0005

Vrms 201.478 171.085 175.343 172.806 171.755 ± 0.020

q1 18.4789 30.6337 20.9644 19.0478 18.4842 ± 0.0100

q2 0.37860 0.17729 0.18048 0.17873 0.17742 ± 0.00003

q3 14.5474 14.7261 14.7092 14.3514 14.1682 ± 0.0050

q4 3.51882 1.28403 0.79348 0.66355 0.61770 ± 0.00005

See the text as for the meaning of the symbols.
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Here, the viscosity contrast rg is set to be 20, and the Rayleigh number defined by the viscosity for T = 0.5 is

2 · 104. In these cases the top and bottom surfaces are assumed to be rigid (v1 = v2 = v3 = 0), while the ver-

tical side walls are planes of mirror symmetry. The initial conditions are chosen to make single ascending

and descending flow at (x,y) = (0,0) and (a,b), respectively.

We summarize the result of benchmark comparison for three-dimensional convection in Table 2.

We calculated the values of (i) Nu and Vrms, (ii) vertical velocity w and temperature T at specified
points at mid-depth of the convecting vessel (z = 0.5), and (iii) vertical temperature gradient Q at

specified points at the top surface (z = 0). We also show in Table 2 the results from the benchmark

standard [42]. The agreement between the obtained results and the benchmark standard is satisfactory

for all of the values. In particular, we obtained a good agreement for Case 2. We thus conclude that

the present numerical code accurately handles three-dimensional convection of fluids with mildly

variable viscosity.



(a) Case 1a (b) Case 2

T=0.3

T=0.7

T=0.3T=0.7Fig. 1. Isothermal surfaces obtained forthe benchmark calculations of stationary convections in Busse et al.[42]. (a) Case 1ais forconstant viscosity, while (b) Case 2 is for modestly temperature-dependent viscosity whose viscosity contrast is 2.0 The calculationswere carried out with (a) 64·32 ·64 and (b) 64·64 ·64mesh divisions.Table 2Benchmark comparison with Busse et al. [42]

Mesh 16 ·8·16 32·16 ·32 64·32 ·64 128·64 ·128 Benchmark standard(a)Case 1a(constant viscosity, Ra = 3 ·104, a = 1.0079, b = 0.6283)Nu3.7373 3.6019 3.5549 3.5419 3.5374 ± 0.0005Vrms42l047 41l382 41l104 41l026 40.999 ± 0.004w(0,0, 0.5) 122l919 12.0451 1193880 116.964 116.625 ± 0.030w(0,b,0.5) 2.0044 33.693 383566 393994 40.500 ± 0.030T(0,0, 0.5) 0l79161 0l80376 0l80262 0l80169 0l80130 ± 0.00005T(0,b,0.5) 0l57314 0l60324 0l61434 0l61761 0l61876 ± 0.00005Q (0,0) 9368656 9308517 6.82042 6.74082 6.7127 ± 0.0500Q ( a,0) 1.85083 1l60300 1l53359 1l51460 1l5080 ± 0.0500Q (0,b) 2l7
670 2l96542 3.10916 3.1
671 3.1740 ± 0.0500Q ( a,b) 0l74943 0l70104 0l70778 0l71225 0l7140 ± 0.0500Mesh 16 ·16 ·16 32·32 ·32 64·64 ·64 128·128 ·128 Benchmark standard

(b)Case 2 (modestly temperature-dependent viscosity, a = b = 1)Nu3.0870 3.0503 3.0419 3.0399 3.0393 ± 0.0050Vrms35l350 35.161 35.130 35.124 35.13 ± 0.05w(0,0, 0.5) 154.076 162l020 164.814 165.631 165.9 ± 1l0w(0,b,0.5)� 25.662� 265446� 265650� 265703� 26572 ± 0.1w( a,b,0.5)� 593973� 583731� 583360� 584260� 58423 ± 0.1T(0,0, 0.5) 0l88286 0l89803 0l90323 0l90474 0l90529 ± 0.0010T(0,b,0.5) 0l51736 0l50170 0l49724 0l49606 0l49565 ± 0.0010T( a,b,0.5) 0l25785 0l24417 0l24052 0l23957 0l23925 ± 0.0010Q (0,0) 6309608 5.90091 5.85018 5.83783 5.834 ± 0.015Q ( a,0) 1l80145 1l73607 1l71942 1l71508 1l714 ± 0.015Q ( a,b) 0l78762 0l77281 0l76952 0l76869 0l768 ± 0.015See the text as for the meaning of the symbols.M. Kameyama et al. / Journal of Computational Physics 206 (2005) 162–181 171



Table 3

Comparison of the flow patterns, Nusselt numbers Nu and the minimum mesh sizes in z-direction dzmin between the present method

(‘‘KKS’’) and Ogawa et al. [36] (‘‘OSZ’’)

Case Rat rg Pattern Code KKS OSZ

Mesh 32 · 16 · 32 64 · 32 · 64 128 · 64 · 128 24 · 14 · 22*

dzmin 0.03125 0.015625 0.0078125 3.2 · 10�2

1 105 1 WL-3D Nu 9.816 10.071 10.101 9.72

4 103 102 WL-2D Nu 4.060 4.073 4.077 4.13

10 103 103 WL-3D Nu 4.961 4.932 4.921 4.96

Mesh 32 · 16 · 32 64 · 32 · 64 128 · 64 · 128 44 · 18 · 30*

dzmin 0.03125 0.015625 0.0078125 1.7 · 10�2

16 103 3.2 · 103 WL-3D Nu 5.284 5.271 5.271 5.37

Mesh 32 · 16 · 32 64 · 32 · 64 128 · 64 · 128 44 · 18 · 30*

dzmin 0.03125 0.015625 0.0078125 1.3 · 10�2

17 102 3.2 · 104 SL-3D Nu 3.561 3.631 3.659 3.61

18 32 105 SL-3D Nu 3.119 3.174 3.197 3.17

Note that in OSZ [36] the mesh spacing was taken to be non-uniform with finer resolution near the boundaries so as to improve the

accuracy in Nu.
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3.2.3. Benchmark for three-dimensional convection with strong viscosity variation

We also carried out the calculations similar to Ogawa et al. [36] in order to test our code for a much

stronger temperature-dependence of viscosity. A steady-state convection in a box of 1.7 · 0.5 · 1 is consid-

ered. The impermeable and shear-stress-free conditions are adopted along the all boundaries. We carried
out calculations for several cases of Ogawa et al. [36] with several mesh divisions. In these calculations

we varied Rat, the Rayleigh number defined with gt, and the viscosity contrast rg = exp(ET) between the

top and bottom boundaries, as listed in Table 3. Fig. 2 shows the convective flow patterns for several cases.

We obtained the same flow patterns and the change in flow patterns depending on Rat and rg as in Ogawa et

al. [36]. The convective flow patterns are classified into three-dimensional whole-layer convection (WL-3D)

for Case 1 (Rat = 105 and rg = 1), two-dimensional roll of whole-layer convection (WL-2D) for Case 4

(Rat = 103 and rg = 102), again in WL-3D for Case 16 (Rat = 103 and rg = 3.2 · 103), and in three-dimen-

sional stagnant-lid convection (SL-3D) for Case 18 (Rat = 32 and rg = 105).
We summarize the comparison of the flow patterns and Nusselt numbers Nu obtained by the present

code (‘‘KKS’’) and those by Ogawa et al. [36] (‘‘OSZ’’) in Table 3. The values of Nu obtained by both codes

agree within at most 4% deviation for all cases. The largest deviation for Case 1 may come from the dif-

ferences in adopted mesh sizes. The present calculations are carried out with the minimum mesh size in

z-direction of 1/128, which is more than four times finer than that employed in Ogawa et al. [36]. It is most

likely that a finer spatial resolution is required for Case 1 than that employed in Ogawa et al. [36] in order to

resolve the thermal boundary layers.

3.3. Robustness and efficiency of multigrid iteration against spatial variation in viscosity

To demonstrate the robustness and efficiency of the present algorithm against the spatial variation in

viscosity, we performed convergence tests similar to Albers [24]. Here we solve Eqs. (1) and (2) only for

prescribed distributions of buoyancy and viscosity. The distributions of buoyancy and viscosity are given

by assuming the Rayleigh number Rat and the temperature-dependence of viscosity ET for a prescribed dis-

tribution of temperature. (The distributions of temperature used for the tests will be introduced below.) We

take into account the change of the viscosity variation in the convecting vessel by increasing the global



(a) Case 1 (Rat = 105, rη = 1 ) (b) Case 4 (Rat = 10 3, rη = 102)

T=0.7

T=0.3

=0.7=0.3Case 165(

t= 10 3,

T=0.5T=0.92

=0.92

=0.5

Fig. 2. Isothermal surfaces for several cases listed in Table 3 obtained by three-dimensional convection with strongly temperature-

dependent viscosity similar to Ogawa et al. [36] . The calculations were carried out with 64 · 32 · 64 mesh divisions.
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viscosity contrast rg = exp(ET) from 1 to 1010, and estimate a threshold value of rg (hereafter denoted by rcg)
below which the multigrid iteration converges. The values of velocity and pressure are initially set to zero,

and are iteratively updated until the L2-norm of the residual r = b � Ax in Eq. (4) becomes smaller than

that of b by 8 orders of magnitude. All of the calculations were done with equally spaced 64 · 64 · 64 mesh

divisions and 6 grid levels, where the grid is coarsest for the grid level ‘ = 1 and finest for ‘ = 6. The mesh

spacing is successively doubled as ‘ decreases, and the mesh spacing is 1/2 for grid level ‘ = 1.

We used three distributions of temperature (hereafter denoted by Temperatures A, B, and C). In Fig. 3

we present (a), in the left column, several isothermal surfaces and (b), in the right column, the plots of the
horizontally averaged temperature Th and the maximum of the magnitude of local temperature gradient

|grad(T)|max at each height z, for these temperatures. The temperature fields are taken from snapshots of

a three-dimensional time-dependent thermal convection of fluid with temperature-dependent viscosity in

a cubic box. The Rayleigh number Rat defined by viscosity gt is 10
3, and ET = ln(105) is assumed. In Tem-

perature A, which is taken from an early stage of the temporal evolution (nondimensional time
Ra r�= 3.2 × 10  )3(d)Case 18 ( Rat= 32, r�= 10 5)



(a) isotherms (b) Th(z) and | |grad(T) max(z)

Temperature A

Temperature B

(t = 5.4 × 10 -4)

=0.8T = 0 . 50 1 Th01z0 5 0 |grad(T)|maxt= 1.52× 10 -2)=0.5T=0.850Th01z050 |grad(T)|maxt=3.6× 10-2)= 0 . 8 8T=0.70 1 Th0

1z0 50 |grad(T)|max

Fig. 3. Distributions of temperature used for convergence tests. These temperature distributions were obtained by three-dimensional
time-dependent simulation of thermal convection of ”uids with temperature-dependent viscosity in a cubic box. The employed mesh
division is 64 · 64 · 64. In (a) the several isothermal surfaces are shown, while in (b) the horizontally averaged temperatureTh(black

lines) and the maximum of |grad(T)| at height z(red lines) are plotted as a function ofz.174M. Kameyama et al. / Journal of Computational Physics 206 (2005) 162…181
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t = 5.4 · 10�4), the convective flow occurs only in the lowermost part of the box, and the local variation in

the temperature is very small in the entire box (see the top panel of Fig. 3(b)). In Temperature B

(t = 1.52 · 10�2), the cold fluid with T < 0.5 sinks into the hot interior, and a large local variation in tem-

perature occurs around the descending flow near the bottom surface (see the middle panel of Fig. 3(b)). In

Temperature C (t = 3.6 · 10�2), the interior of the box is nearly isothermal and, as can be also seen from the
smaller |grad(T)|max than in Temperature B, the temperature contrast between the descending flow and the

surroundings becomes smaller.

In addition, to find an appropriate implementation of the present algorithm for the multigrid operation,

we employed four different types of smoothing procedures during the multigrid V-cycles. In these types, we

varied the number of iterations Ns by (6) for the pre- and post-smoothing calculations at each grid level, as

listed in Table 4. In Type 0, Ns is taken to be 8 at all grid levels, and is the smallest among the four types

employed in these tests. In Type 1, Ns depends on the grid level ‘. The value of Ns is taken to be equal to

that in Type 0 at the finest grid (‘ = 6), and is successively doubled as the grid becomes coarser. In Types 2
and 3, in contrast, Ns is assumed to be dependent on both the grid level ‘ and the global viscosity contrast

rg. In both types, Ns at the finest grid is taken to be [ln(rg) + 1] times larger than that in Type 1, and the

values of Ns is successively multiplied by two and four as the grid becomes coarser in Types 2 and 3,

respectively.

We compared the convergence behaviors of different types of smoothing procedures, for three distribu-

tions of T and various values of rg. In Fig. 4 we show the plots against rg of (a) the number of V-cycles NV

and (b) the function Ws given by
Table

Numb

study

Type

0

1

2

3

Here, N

taken
W s ¼
P6

‘¼1nð‘Þ � mð‘Þ
mð‘ ¼ 6Þ ; ð23Þ
where n(‘) is the total number of iterations by (6) in the smoothing procedures on grid level ‘, and

m(‘) ” 4 · (64/26�‘)3 is the number of elements of the unknown vector x (i.e., the number of unknown vari-

ables; see (6)) on grid level ‘. The numerator in (23) represents the total number of updating operations of
unknown variables during the entire multigrid iterations, while the denominator represents the number of

updating operation during one smoothing calculation at the finest grid (‘ = 6). Namely, Ws is the measure

of the computational cost of the multigrid iterations, and it indicates that the total computational cost spent

in the smoothing procedures during the entire multigrid iterations is equal to that virtually spent in Ws-

times smoothing calculations on the finest grid. In the figure, the values are plotted only for rg 6 rcg, below
which the multigrid iteration converges.

The comparisons of rcg for different types of smoothing procedures in Fig. 4 show that the value of rcg
becomes larger from Types 0 to 3 for all temperature distributions. For Type 0, rcg is 10

3 for Temperature
A, and 102 for Temperatures B and C. By changing from Types 0 to 1, rcg increases to 107 for Temperature

A, and to 103 for Temperatures B and C. The value of rcg significantly increases by further changing to
4

ers of pre- and post-smoothing calculations Ns on grid level ‘ employed in the various types of the smoothing procedures in this

Ns(‘) on grid level ‘

8

8� 2Ngrid�‘

½lnðrgÞ þ 1� � 8� 2Ngrid�‘

½lnðrgÞ þ 1� � 8� 4Ngrid�‘

grid is the number of employed grids and rg is the magnitude of global viscosity contrast. In the present calculations Ngrid is

to be 6.
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Fig. 4. Convergence behavior for various values of global viscosity contrast rg and for temperature fields in Fig. 3 by using various

types of smoothing procedures listed in Table 4. In (a) the number of V-cycles NV is plotted against rg. In (b) the measure of total

computational cost in the smoothing procedures Ws is plotted against rg. The values are plotted only for rg 6 rcg, below which the

multigrid iteration converges.

176 M. Kameyama et al. / Journal of Computational Physics 206 (2005) 162–181
Types 2 and 3. For Type 2, rcg is larger than 1010 for Temperature A, and 106 for Temperatures B and C. For
Type 3, rcg is larger than 1010 for Temperature A, and 108 for Temperatures B and C. From the comparison

between these types, we conclude that the robustness of the multigrid iteration is improved by increasing
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Ns. In particular, a significant improvement is obtained for large rg by increasing Ns in proportion to

[ln(rg) + 1].

The multigrid iteration becomes more robust against rg for larger Ns, since larger number of iterations of

(6) can reduce the errors more effectively. To see this more clearly, we show in Fig. 5 the evolution of the L2-

norm of residual during the multigrid iteration on the finest grid (‘ = 6) for the cases (a) where the iteration
converged with Type 1, and (b) where the iteration diverged with Type 0. For Type 1 where the multigrid

iteration converges (Fig. 5(a)), the L2-norm of residual on the finest grid is significantly reduced after com-

ing back from the smoothing on coarser grids. Even if the residual is increased during the smoothing cal-

culations on the finest grid (it can sometimes happen in this kind of decaying oscillation system; see Eq. (15)

or (19)), it is significantly reduced by the coarse-grid correction. As a result, the residual is successively re-

duced by the multigrid iterations. For Type 0, where the multigrid iteration diverges (Fig. 5(b)), in contrast,

the L2-norm of residual on the finest grid is increased after coming back from the smoothing on coarser

grids. The smoothing calculations on the finest grid reduces the residual, except for the first multigrid iter-
ation. However, the decrease in the residual by the smoothing calculations is too small to overcome the

increase by the coarse-grid correction. As a result, the residual is successively increased by the multigrid

iterations. From the comparison between these cases, we conclude that sufficient number of smoothing cal-

culations are necessary on coarser grids in order to ensure the convergence of multigrid iteration when a

large spatial variation in viscosity is involved.

Fig. 4 also shows that the convergence rates of our method differ between the types of smoothing pro-

cedures. The comparison in the convergence rates between Types 0 and 1 for small rg indicates that a suc-

cessive increase in Ns to coarser grids significantly reduces the number of V-cycles NV (Fig. 4(a)) as well as
the computational cost Ws (Fig. 4(b)). This stabilizing effect of increasing the number of smoothing itera-

tions on coarser grids is in agreement with the features of previous results using multigrid methods (for

example [22,24]). The comparison between Types 1 to 3 in Fig. 4(a) indicate that NV is significantly reduced

by increasing Ns in proportion to [ln(rg) + 1]. This feature is also consistent with the earlier results (for

example [22,24]). As can be seen in Fig. 4(b), however, the computational costWs of smoothing calculations

increases as Ns becomes larger from Types 1 to 3. This is because the cost of smoothing calculations during

one V-cycle becomes significantly larger.

We also note from Fig. 4 that the convergence behavior differs between the prescribed temperature fields.
This difference may reflect the difference in the magnitude of the local temperature gradient |grad(T)| shown
(a) Type 1, Temperature A, rη
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Fig. 5. Comparison in the evolution of the L2-norm of residuals on the finest grid (grid level ‘ = 6) during the initial five multigrid V-

cycles between the case with the smoothing procedures of (a) Type 1 and (b) Type 0. Both calculations were performed with

Temperature A and rg = 104. The red lines indicate the evolutions obtained by the smoothing calculations on the grid level ‘ = 6, while

the blue arrows indicate the changes of residuals for ‘ = 6 due to the coarse-grid correction.
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in Fig. 3(b). The different temperature distributions provide the different distributions of viscosity. The dis-

tribution of viscosity determines the nature of the coefficient matrix A in (4) and, hence, determines the con-

vergence behavior of (6). In particular, a larger |grad(T)| generates a larger local variation of viscosity for

given rg, and makes the convergence of (6) more difficult. The convergence behaviors presented in Fig. 4 are

qualitatively consistent with the above conjecture. The multigrid iteration converges most easily for Tem-
perature A with the smallest |grad(T)|, and least easily for Temperature B with the largest |grad(T)|. In Fig.

4, the value of rcg is the largest for Temperature A for any type of smoothing procedures. Although the val-

ues of rcg are the same for Temperatures B and C when the same type of smoothing procedures is employed,

the number of V-cycles NV is smaller for Temperature C than for Temperature B, except for the case with

Type 2 for Temperature C and rg = 106. These convergence behaviors are also consistent with those in the

earlier studies (for example [23,24]).
4. Discussion and concluding remarks

We developed a numerical algorithm for solving mantle convection problems with strongly variable vis-

cosity. Equations for conservation of mass and momentum for highly viscous and incompressible fluids are

solved iteratively by a multigrid method in combination with pseudo-compressibility and local time step-

ping techniques. In order to demonstrate its efficiency, the present algorithm has been implemented into

a mantle convection simulation program based on the finite-volume discretization in a three-dimensional

rectangular domain. Benchmark comparison with previous two- and three-dimensional calculations includ-
ing the temperature- and/or depth-dependent viscosity revealed that accurate results are obtained even for

the cases with viscosity variations of several orders of magnitude. We could also significantly improve the

robustness of the numerical method against a spatial variation in viscosity by increasing the pre- and post-

smoothing calculations in the multigrid operations. We achieved convergence even for the viscosity

contrasts up to 1010, although the convergence rate deteriorates with increasing viscosity variations. The

present algorithm can be further applied to the numerical models under more realistic conditions, such

as spherical shell geometry and so on.

The results of convergence tests described in Section 3.3 suggest that the convergence of multigrid
method in combination with the present algorithm is determined by the accuracy of the coarse-grid correc-

tion when a large spatial variation in viscosity is incorporated. In the present convergence tests, the accu-

racy of coarse-grid correction was improved by increasing the amount of smoothing calculations on coarser

grids during one multigrid iteration. This strategy always works, since the present iterative procedure never

diverges as long as the local time stepping satisfies the CFL condition (see Section 2.3). However, it turned

out that total computational costs significantly increased as the magnitude of viscosity contrast becomes

larger (see Fig. 4(b)). Therefore, one needs to further accelerate the rate convergence of (6) in order to

improve the efficiency of smoothing calculations and, in turn, to improve the accuracy of coarse-grid
correction.

The discussion in Section 2.3 also suggests that the rate of convergence of the present smoothing algo-

rithm can be accelerated by choosing the matrix T in (6) more properly. As has been pointed out in Section

2.3, the matrix T acts as a ‘‘preconditioner’’ for (4). That is, the convergence of (6) becomes faster as T bet-

ter approximates A�1. In the present application to mantle convection problems, we had chosen T as a

diagonal matrix by the use of the local time stepping approach. In addition, we had determined the values

of nonzero elements of T from the assumption that both the rate of ‘‘diffusion’’ in velocity components and

the rate of propagation of ‘‘pseudo-sound wave’’ were kept almost uniform in space. This choice of T cor-
responds to the preconditioning similar to the diagonal scaling of (4). However, apart from the local time

stepping approach, we can use any arbitrary matrix T rather than a diagonal matrix. In other words, the

convergence of (6) is accelerated if T preconditions (4) more properly than in the present paper. We can
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construct T, for example, by an incomplete factorization of A. Since the matrix T defined thus is most likely

to be a better approximation of A�1 than that employed here, the convergence of (6) is expected to be faster

than in the present cases. On the other hand, constructing T by an incomplete factorization has several dis-

advantages because (i) more memory is required to store all of the nonzero elements of T and (ii) the oper-

ation of an incomplete factorization is difficult to vectorize and parallelize. We should, therefore, take into
account the specific computer architecture (such as scalar or vector processors) in choosing the most appro-

priate T in terms of preconditioning techniques.

However, the most essential improvement possible for the present numerical method is the multigrid

operation itself, rather than the smoothing calculations during multigrid iteration. As has been suggested

in Section 3.3, the reason why the multigrid iteration diverges for larger rg is that the coarse-grid correction

becomes less efficient as rg increases (see Figs. 4 and 5). The inefficiency of coarse-grid correction may come

from an inappropriate treatment of the influences of variable viscosity in the multigrid operation. In the

present numerical method, as well as in most of earlier models based on finite-volume discretization
[28,22,24], we followed a ‘‘standard’’ strategy of multigrid. Namely, a linear interpolation was used for

transferring the residual and error between adjacent grid levels. In addition, the discretized equations on

coarser grids were derived by directly discretizing the differential equations on the particular coarser grids.

However, as has been already acknowledged in the literature of multigrid [12,13], the standard strategy does

not efficiently work when the differential equations contain strongly varying coefficients. One of the poten-

tial remedies is to develop the discretized equations based on Galerkin coarse-grid approximation [12,13],

where the coefficient matrix �A on a coarse grid is defined from the matrix on a fine grid A by
�A ¼ RAP; ð24Þ

where R and P are the restriction and prolongation operators, respectively. The Galerkin coarse-grid

approximation can automatically define the coefficient matrix �A on the coarse grid, so as to sufficiently

approximate A defined on the fine grid. But it is not straightforward to use this approach in finite-volume

models, since it makes the coefficient matrices on the coarse grids very complicated, with increased stencils,

compared to those coming from the direct discretization. On the other hand, another potential remedy is to

use the operator-dependent transfer operators [12,13]. These transfer operators utilize the structure of A
with the variations in its coefficients and, hence, improve the accuracy of the restriction and prolongation
operations. Indeed, Yang and Baumgardner [18] incorporated these transfer operators together with the

Galerkin coarse-grid operators into their finite-element models, and demonstrated significant improve-

ments in the robustness and efficiency of their multigrid procedures even for the cases with strongly viscos-

ity variations. We expect that the robustness of our multigrid method presented in Section 3 can be

improved by incorporating the operator-dependent transfer operators into the present model, although

their efficiency is left uncertain when used without the Galerkin approximation [24].

It is also an important issue to improve the robustness of the multigrid iterations against a ‘‘sharp’’ or

‘‘discontinuous’’ variation in viscosity, in addition to a ‘‘smooth’’ variation considered here. One of the
major unsolved problems in the numerical study of mantle dynamics is to reproduce the motion of sur-

face plates in the framework of mantle convection. Earlier numerical studies (for a review [43]) had dem-

onstrated that the generation of localized zones of low viscosity around the plate boundaries plays an

important role in reconciling the fluid-like flow of mantle with the discrete motion of surface plates.

However, it is very difficult in essence for the multigrid method to deal with a local variation in viscosity

as long as uniform mesh spacing is considered, since such local features are hardly ‘‘visible’’ on coarser

grids. Recently, in several fields of geophysical fluid dynamics, adaptive gridding techniques, such as the

local mesh refinement [24], its combination with spectral-element method [44], and the wavelet-based
method [45], are utilized. Since these methods allow taking the spatial resolution non-uniformly in space,

a local variation of viscosity can be handled accurately by, for example, using finer resolution around the

regions of local variation. We thus speculate that the combination of these techniques together with the



180 M. Kameyama et al. / Journal of Computational Physics 206 (2005) 162–181
present method is one promising approach to reproduce the motion of surface plates in the numerical

model of mantle convection.
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